The effectiveness of neuromuscular electrical stimulation hinges on the evoked torque level, which can be attained through either conventional (CONV) or wide-pulse high frequency (WPHF). However, the best electrode placement is still unclear. This study adopted a crossover design to compare the effects of WPHF applied to the tibial nerve trunk (N-WPHF) or muscle (M-WPHF) with CONV in healthy participants. A total of 30 participants (age: 22.4 [4.5]) were involved in 4 sessions. During each session, participants performed: 2 maximal voluntary contractions, 2 contractions at maximal evoked torque, and 2 contractions at submaximal evoked torque at 20% maximal voluntary contraction. Neuromuscular electrical stimulation intensity-evoked torque, efficiency, and discomfort were measured in maximal and submaximal conditions. Statistical analyses were conducted using a 1-way mixed-model analysis of variance with repeated measures. N-WPHF and M-WPHF showed higher evoked torque than CONV (P = .002 and P = .036) and greater efficiency than CONV for maximal evoked torque (P = .006 and P = .002). N-WPHF induced higher efficiency than M-WPHF and CONV for submaximal evoked torque (P = .004). Higher discomfort was observed for both N-WPHF and M-WPHF for submaximal evoked torque compared with CONV (P = .003 and P < .001). Our results suggest that WPHF applied at either the nerve or muscle could be the best choice for the maximal condition, whereas nerve application is preferred for the submaximal condition.
Read full abstract