BackgroundThe aim of the present study was to identify potential race- or gender-specific differences in anterior cruciate ligament (ACL) tibial footprint location from the tibia anatomical coordinate system (tACS) origin, investigate the distances from the tibial footprint to the anterior root of the lateral meniscus (ARLM) and the medial tibial spine (MTS), determine how reliable the ARLM and MTS can be in locating the ACL tibial footprint, and assess the risk of iatrogenic ARLM injuries caused by using reamers with various diameters (7–10 mm).Patients and methodsMagnetic resonance images of 91 Chinese and 91 Caucasian subjects were used for the reconstruction of three-dimensional (3D) tibial and ACL tibial footprint models. The anatomical coordinate system was applied to reflect the anatomical locations of scanned samples.ResultsThe average anteroposterior (A/P) tibial footprint location was 17.1 ± 2.3 mm and 20.0 ± 3.4 mm in Chinese and Caucasians, respectively (P < .001). The average mediolateral (M/L) tibial footprint location was 34.2 ± 2.4 mm and 37.4 ± 3.6 mm in Chinese and Caucasians, respectively (P < .001). The average difference between men and women was 2 mm in Chinese and 3.1 mm in Caucasians. The safe zone for tibial tunnel reaming to avoid ARLM injury was 2.2 mm and 1.9 mm away from the central tibial footprint in the Chinese and Caucasians, respectively. The probability of damaging the ARLM by using reamers with various diameters ranged from 0% for Chinese males with a 7 mm reamer to 30% in Caucasian females with a 10 mm reamer.ConclusionsThe significant race- and gender-specific differences in the ACL tibial footprint should be taken in consideration during anatomic ACL reconstruction. The ARLM and MTS are reliable intraoperative landmarks for identifying the tibial ACL footprint. Caucasians and females might be more prone to iatrogenic ARLM injury.Level of evidence: III, cohort study.Trial registration: This study has been approved by the ethical research committee of the General Hospital of Southern Theater Command of PLA under the code: [2019] No.10.
Read full abstract