The microstructure, elastoplastic properties, and corrosive response of induced porous Ti-TiH2 materials reinforced with TiB2 particles were investigated. Samples were fabricated using CP-Ti Grade1, Titanium Hydride (TiH2), TiB2 powders (0, 3, 10, and 30 vol.%), and ammonium bicarbonate salt (40 vol.%) as a space holder. Composites were fabricated using the Powder Metallurgy technique under high-vacuum conditions (HVS) at 1100 °C. Scanning electron microscopy, X-ray diffraction, nanoindentation tests, and electrochemical assays were used to investigate the pore formation, pore distribution, phase formation, elastoplastic properties, and electrochemical behavior of the compounds, respectively. With a mean pore diameter of 50–900 µm and Young’s modulus of less than 100 GPa, which is close to the properties of human bone, the pore structures of the compounds processed here are shown to be a potential biomaterial for osseointegration. In addition, their H/Er and H3/Er2 ratios for the reinforced samples are higher than those of the unreinforced sample (1.5 and 4 times higher than the unreinforced sample, respectively), suggesting a better wear resistance of the Ti-TiH2/xTiB2 composites. Electrochemical experiments demonstrated that the Ti-TiH2/xTiB2 composites exhibited superior passivation properties compared to the Ti-TiH2 sample. Additionally, the corrosion rates exhibited by the 3 and 10 vol.% of TiB2 samples were found to be within an acceptable range for potential biomedical applications (29.26 and 185.82 E-3 mm·y−1). The elastoplastic properties combined with the electrochemical behavior place the Ti-TiH2/3-10TiB2 composites as potential candidates for the biomedical application of CP-Ti.