BackgroundMaifanitum, a mineral used in Chinese medicine, was first documented during the Song Dynasty (960-1279). Historical records suggest its multifaceted therapeutic properties, including detoxification and stasis resolution, necrosis removal and tissue regeneration, diuretic and calculi dissolution and prolonging life. The concentration of elements in Maifanitum may vary depending on its origin, different parts, which can affect its effectiveness in different fields of applications. Therefore, the analysis of elements in Maifanitum and the subsequent health risk assessment have been conducted. This provides an important basis for the quality control and application safety of Maifanitum. MethodThe analytical techniques employed in this study are inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES), utilized for the quantitative assessment of 60 elements (Refer to Appendix 1) within Maifanitum samples. Based on the test results, chemometric methods are employed to evaluate the characteristics and differences in elemental concentration from different sources and locations. Additionally, a preliminary health risk assessment is conducted for Maifanitum from different origins and various parts. ResultsWe have established a fingerprint of the elements within Maifanitum, demonstrating a commendable level of similarity. The findings from hierarchical cluster analysis(HCA) corroborated with those from principal component analysis (PCA), collectively unveiling a systematic profile of elemental disparities between Maifanitum samples of diverse origins and applications. It also revealed that there are differences in the concentration of Al, Ga, Be, Hf, Na, Sn, Ti, Zr, Gd, Tb, Sr, Pb, Ce, Ba and other elements in different parts of Maifanitum. While Cd, As, and Cu levels in all samples were within the permissible limits as defined by the Chinese Pharmacopeia, Pb concentrations in the majority of samples were found to surpass these standards, albeit slightly in the ''non-rice'' fraction. The assessment of both beneficial and deleterious elements indicates that the ''non-rice'' fraction of Maifanitum possesses superior quality attributes. Moreover, the overall concentration of rare earth elements in Maifanitum is substantially below the established lower threshold for daily human consumption, with no immediate evidence suggesting any adverse health risks. ConclusionThis study provides a basis for the quality control and safety evaluation of Maifanitum in clinical use.