Serum PRL, TSH, and T4 secretion during prolonged continuous or intermittent iv infusions of TRH were studied in 14 adult ovariectomized rhesus monkeys (Macaca mulatta). For 9 days, TRH was administered intermittently at 0.33 or 3.3 micrograms/min for 6 of every 60 min and continuously at 0.33 micrograms/min. With both modes, the PRL levels and responsiveness to TRH simulation peaked on day 1 and then fell to levels that were still higher than the preinfusion values; levels for the intermittently treated group on days 3-9 were 2- to 4-fold above prestimulation levels and significantly (P less than 0.01) higher than levels for the continuously treated group. Elevated basal levels and PRL responses to TRH pulses were similar during the 0.33 and 3.3 micrograms/min pulses of the 9-day treatment period. For both TRH modes, TSH levels were elevated significantly (P less than 0.001) on day 1 [this increase was higher with continuous infusion (P less than 0.001)] and then fell to preinfusion levels by day 3. Serum T4 also increased during both continuous and intermittent TRH stimulations. However, serum T4 levels were significantly lower (P less than 0.01) after intermittent TRH (both 0.33 and 3.3 micrograms/min) than after continuous (0.33 micrograms) TRH (8 +/- 1.1 and 10 +/- 1.8 micrograms T4/dl vs. 18 +/- 3.1 micrograms, respectively). These PRL and T4 responses were replicated when the mode of administering 0.33 micrograms/min TRH was reversed after 9 days. An iv bolus of TRH (20 micrograms) after 9 days of continuous or intermittent TRH infusion caused significant release of PRL and TSH, an indication that neither mode of administration resulted in pituitary depletion of releasable hormone. We have concluded that intermittent TRH is more effective in elevating serum PRL, and continuous TRH is more effective in raising TSH and T4 levels. Thus, the manner of TRH secretion by the hypothalamus may determine its relative physiological importance in the stimulation of lactotropes and thyrotropes.
Read full abstract