Regulatory T cells (Tregs) play a critical role in the maintenance of a pregnancy. While the kinetics of the number of peripheral blood Tregs has been satisfactorily described in mouse models, analysis of these cell populations in human pregnancy is complicated by high variability in the quantity of Tregs and inconsistencies in the markers used for detecting different types of Treg. In the light of this, we set out to investigate the kinetics of various types of Treg, including CD45RA, GARP and PD-1(+) Tregs, in the peripheral blood of pregnant women in the first, second and third trimester, and at the time of delivery. Tregs, defined as a CD4(+)CD25(++)CD127(dim)Foxp3(+) population of leucocytes, were detected using flow cytometry. Natural thymus-derived Tregs and induced Tregs in the peripheral blood were distinguished by the expression or absence of a Helios marker, respectively. Our results showed that during normal pregnancy the sizes of various Treg subpopulations varied across women and also in an individual woman did not remain constant but varied significantly, most notable being the decrease observed at the time of delivery. Helios(-) cells were significantly less frequent in the peripheral blood of healthy pregnant women than Helios(+) cells, and the majority of Tregs were Helios(+)PD-1(+) Tregs.
Read full abstract