ABSTRACT The tsunami in March 2011 heavily damaged the Pinus thunbergii Parlatore erosion-control coastal forests of northeastern Japan. The restoration is in process but has been challenged by waterlogging resulting from soil compaction of artificial growth bases. In this study, a pot experiment was conducted to elucidate the waterlogging responses of two-year-old P. thunbergii seedlings in terms of waterlogging duration. Three waterlogging durations were set (7 days, 17 days, and 32 days, water table at soil surface) during August, followed by a waterlogging-free recovery period (28 days) in September. In this experiment, the responses of both above- and belowground organs during waterlogging and after the release from waterlogging were elucidated, focusing on parameters, such as transpiration and photosynthesis rates, as well as fine root growth and morphology. As a result, we found that under the conditions of our experiment, if the waterlogging duration is within 17 days, P. thunbergii seedlings can recover physiological activity in about a week; however, if the waterlogging duration is over 32 days, recovery after the release from waterlogging largely varied among seedlings. For the seedlings that could recover, recovery took at least 2 weeks, which required new fine root growth. In cases where the damage was irreversible, seedlings showed an overall decline. These results suggest that it is important to manage the waterlogging conditions so that P. thunbergii seedlings can recover without prolonged negative effects.
Read full abstract