AbstractThis study has developed adaptive synergetic control (ASC) algorithm to control the angular position of moving plate in the electronic throttle valve (ETV) system. This control approach is inspired by synergetic control theory. The adaptive controller has addressed the problem of variation in systems parameters. The control design includes two elements: the control law and adaptive law. The adaptive law is developed based on Lyupunov stability analysis of the controlled system, and it is responsible for estimating the potential uncertainties in the system. The effectiveness of the proposed adaptive synergetic control has been verified by numerical simulation using MATLAB/Simulink. The results showed that the ASC algorithm could give good tracking performance in the presence of uncertainty perturbations. In addition, a comparison study has been made to compare the tracking performance of ASC and that based on conventional synergetic control (CSC) for the ETV system. The simulated results showed that the performance of ASC outperforms that based on CSC. Moreover, the results showed that the estimation errors between the actual and estimated uncertainties are bounded and there is no drift in the developed adaptive law of ASC.