Abstract
The control strategy for improving the emission performance of engine transition condition is explored to enhance the dynamic response characteristics of the electronic throttle control system of automobile engines. A strong nonlinear relationship exists among the return spring, gear backlash, throttle shaft, and throttle body friction of the electronic throttle electromechanical system, thereby affecting the dynamic response characteristics of the engine electronic throttle under various operating conditions. On the basis of the nonlinear electronic throttle electromechanical system, a corresponding mathematical model is established to study the electronic throttle control system. Then, fuzzy and immune feedback control algorithms are applied to the motion control of the electronic throttle system on the basis of intelligent control because of its advantages of strong anti-disturbance ability, strong robustness, and applicability to nonlinear control systems. The immune feedback control algorithm is characterized by a rapid response in the control system. The influence of nonlinearity of the electronic throttle system on the control effect is discussed in this paper. The fuzzy immune PID controller is designed on the basis of the classical control algorithm PID for control precision and response of the system. The fuzzy control algorithm's adaptability to the nonlinear system improves the response performance of the electronic throttle system, and the immune feedback algorithm enhances the response efficiency of the control system. The response characteristics of electronic throttle is further explored. Experimental results show that the response speed of the fuzzy immune PID control system and speed adjustment of the dynamic characteristics of indicators have clear advantages over those of the PID and fuzzy PID control system. The controller is conducive to the improvement of the electronic throttle response characteristics. Improving the power, economy, and emissions of vehicles has important significance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Highway and Transportation Research and Development (English Edition)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.