Proof-of-Authorization (PoA) consensus algorithms are widely used in permissioned blockchain networks due to their high throughput, security, and efficiency. However, PoA is susceptible to cloning attacks, where attackers copy the authenticator identity and key, thereby compromising the consensus integrity. This study proposes a novel randomized authenticator within the PoA framework to mitigate cloning attacks and solve the leader selection bottleneck. The main contributions include 1) Introducing unpredictability in leader selection through Verifiable Random Functions (VRFs) to prevent identity duplication.2) Dynamic group management using a hierarchical decentralized architecture of distributed ledgers that balances security and performance.3) Using threshold signatures to avoid a single point of failure among validators.4) Comprehensively analyzing attacks, security, randomness, and availability.5) Evaluating the effectiveness of a randomized authenticator by means of OMNET++ simulations to assess efficiency. By integrating randomness into leader selection and robust consensus design, the approach enables reliable and secure dynamic group management in decentralized networks.
Read full abstract