The aerodynamic test in the pulse combustion wind tunnel is very important for the design, evaluation and optimization of aerodynamic characteristics of the hypersonic aircraft. The test accuracy even affects the success or failure of hypersonic aircraft development. In the aerodynamic test of pulse combustion wind tunnel, the aerodynamic signal is disturbed by the inertial force signal, which seriously affects the test accuracy of aerodynamic force. Aiming at the above problems, this paper innovatively proposes an aerodynamic intelligent identification method, that is the transfer learning network based on adaptive Empirical Modal Decomposition (EMD) and Soft Thresholding (TLN-AE&ST). Compared with the existing aerodynamic intelligent identification model based on deep learning technology, this study introduces the transfer learning idea into the aerodynamic intelligent identification model for the first time. The TLN-AE&ST effectively alleviates the problem of scarcity of training samples for intelligent models due to the high cost of wind tunnel tests, and provides a new idea for further implementation of deep learning technology in the field of wind tunnel aerodynamic testing. And this study designed residual attention block with soft threshold and dense block with adaptive EMD in TLN-AE&ST model. Residual attention block with soft threshold module can more effectively suppress the influence of instrument noise signal on model training effect. Dense block with adaptive EMD makes the deep learning model no longer a black box to a certain extent, and has certain physical significance. Finally, a series of wind tunnel tests were carried out in the Φ = 2.4 m pulse combustion wind tunnel of China Aerodynamic Research and Development Center to verify the effectiveness of TLN-AE&ST.
Read full abstract