Rh-based catalysts were prepared by various methods and it was found that preparation methods play an important role in metal-support interaction (MSI) control which affects the catalytic performance of catalyst. The results suggest that the catalytic reduction of NO is mainly achieved by C3H6 in exhaust and H2 generated from the water-gas shift reaction as well as the steam reforming of C3H8 and CH4. Concentration of water in reaction stream has a significant influence on the water-gas shift and steam reforming reactions. The removal of C3H6 is accomplished by oxygen-induced oxidation instead of steam reforming reaction. In addition, Rh/ceria interactions promote the formation of active oxygen species and surface oxygen vacancy that respectively favors CO oxidation and NO reduction with a high N2 selectivity. Rh@CeO2 system shows high thermal stability due to Rh/ceria interaction.
Read full abstract