Deterministic photon sources allow long-term advancements in quantum optics. A single quantum emitter embedded in a photonic resonator or waveguide may be triggered to emit one photon at a time into a desired optical mode. By coherently controlling a single spin in the emitter, multi-photon entanglement can be realized. We demonstrate a deterministic source of three-qubit entanglement based on a single electron spin trapped in a quantum dot embedded in a planar nanophotonic waveguide. We implement nuclear spin narrowing to increase the spin dephasing time to T2*≃33\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${T}_{2}^{*}\\simeq 33$$\\end{document} ns, which enables high-fidelity coherent optical spin rotations, and realize a spin-echo pulse sequence for sequential generation of spin-photon and spin-photon-photon entanglement. The emitted photons are highly indistinguishable, which is a key requirement for scalability and enables subsequent photon fusions to realize larger entangled states. This work presents a scalable deterministic source of multi-photon entanglement with a clear pathway for further improvements, offering promising applications in photonic quantum computing or quantum networks.
Read full abstract