Abstract

Usually the $\ell_2$-norm plays vital roles in quantum physics, acting as the probability of states. In this paper, we show the important roles of $\ell_1$-norm in Yang-Baxter quantum system, in connection with both the braid matrix and quantum entanglements. Concretely, we choose the 2-body and 3-body S-matrices, constrained by Yang-Baxter equation. It has been shown that for 2-body case, the extreme values of $\ell_1$-norm lead to two types of braid matrices and 2-qubit Bell states. Here we show that for the 3-body case, due to the constraint of YBE, the extreme values of $\ell_1$-norm lead to both 3-qubit $|GHZ\rangle$ (local maximum) and $|W\rangle$ (local minimum) states, which cover all 3-qubit genuine entanglements for pure states under SLOCC. This is a more convincing proof for the roles of $\ell_1$-norm in quantum mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.