As a global health concern, the diagnosis of obstructive sleep apnea hypopnea syndrome (OSAHS), characterized by partial reductions and complete pauses in ventilation, has garnered significant scientific and public attention. With the advancement of digital technology, the utilization of three-dimensional (3D) optical devices demonstrates unparalleled potential in diagnosing OSAHS. This study aimed to review the current literature to assess the accuracy of 3D optical devices in identifying the prevalence and severity of OSAHS. A systematic literature search was conducted in the Web of Science, Scopus, PubMed/MEDLINE, and Cochrane Library databases for English studies published up to April 2024. Peer-reviewed researches assessing the diagnostic utility of 3D optical devices for OSAHS were included. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) guideline was employed to appraise the risk of bias. The search yielded 3216 results, with 10 articles meeting the inclusion criteria for this study. Selected studies utilized structured light scanners, stereophotogrammetry, and red, green, blue-depth (RGB-D) cameras. Stereophotogrammetry-based 3D optical devices exhibited promising potential in OSAHS prediction. The utilization of 3D optical devices holds considerable promise for OSAHS diagnosis, offering potential improvements in accuracy, cost reduction, and time efficiency. However, further clinical data are essential to assist clinicians in the early detection of OSAHS using 3D optical devices.