To determine the impact of eye shape using three-dimensional magnetic resonance imaging on myopic maculopathy (MM) progression. At baseline, 67 participants with high myopia were selected. Eye shape was classified into spheroidal, ellipsoidal, temporally distorted, nasally distorted, conical, and barrel-shape identified from three-dimensional magnetic resonance imaging. Spheroidal and ellipsoidal shapes were defined as nondeformity; others were defined as eye deformity. Myopic maculopathy progression was determined through color fundus photography. Within a 4-year follow-up, 17.1% (7/41) of patients with nondeformed eye shape had MM progression, whereas 69.2% (18/26) of patients with eye shape deformity had MM progression. In multivariable analysis, eye shape deformity (odds ratio, 4.35; 95% confidence interval, 1.10-17.29; P = 0.036) and axial length of ≥28 mm (odds ratio, 12.75; 95% confidence interval, 2.27-71.48; P = 0.004) significantly correlated with MM progression. The predictive discrimination of eye shape alone for MM progression did not differ from axial length (area under the curve: 0.765 vs. 0.750, P = 0.486). By incorporating age, sex, axial length, and eye shape, the prediction model achieved an area under the curve of 0.862 for discriminating MM progression. Eye shape deformity assessed by three-dimensional magnetic resonance imaging is a novel predictor for MM progression in high myopia.
Read full abstract