Liquid crystal molecules tend to align with each other, often forming regions of opposite alignment that meet at a boundary-topological defects. These often offer information on configuration of the liquid crystal molecules with competing constraints on their order. Here, we experimentally demonstrate a mechanism to generate topological defects in the form of spatially oscillatory domain walls in nematic liquid crystals. We initially orient the molecules perpendicular to the substrate (i.e. homeotropic alignment) and when a horizontal electric field is applied, domain walls that change their shape with time emerge. These walls form at low frequencies of the applied electric field and remain stable as the frequency increases. If the initial biasing field is at larger frequencies (kHz regime), the domain walls still form, but are not oscillatory. We develop a general theory to predict the three-dimensional liquid crystal director evolution in any two-dimensional varying field. This theory gives the time dependence for the domain walls and confirms that both the oscillatory and straight walls are stable.