One risk posed by hurricanes and typhoons is local inundation as ocean swell and storm surge bring a tremendous amount of energy and water flux to the shore. Numerical wave tanks are developed to understand the dynamics computationally. The three-dimensional equations of motion are solved by the software ‘Open Field Operation And Manipulation’ v2206. The ‘Large Eddy Simulation’ scheme is adopted as the turbulence model. A fifth-order Stokes wave is taken as the inlet condition. Breaking, ‘run-up’, and overtopping waves are studied for concave, convex, and straight-line seafloors for a fixed ocean depth. For small angles of inclination (<10°), a convex seafloor displays wave breaking sooner than a straight-line one and thus actually delivers a smaller volume flux to the shore. Physically, a convex floor exhibits a greater rate of depth reduction (on first encounter with the sloping seafloor) than a straight-line one. Long waves with a speed proportional to the square root of the depth thus experience a larger deceleration. Nonlinear (or ‘piling up’) effects occur earlier than in the straight-line case. All these scenarios and reasoning are reversed for a concave seafloor. For large angles of inclination (>30°), impingement, reflection, and deflection are the relevant processes. Empirical dependence for the setup and swash values for a convex seafloor is established. The reflection coefficient for waves reflected from the seafloor is explored through Fourier analysis, and a set of empirical formulas is developed for various seafloor topographies. Understanding these dynamical factors will help facilitate the more efficient designing and construction of coastal defense mechanisms against severe weather.
Read full abstract