The Biopharmaceutics Classification System (BCS) has facilitated biowaivers and played a significant role in enhancing drug regulation and development efficiency. However, the productivity of measuring the key discriminative properties of BCS, solubility and permeability, still requires improvement, limiting high-throughput applications of BCS, which is essential for evaluating drug candidate developability and guiding formulation decisions in the early stages of drug development. In recent years, advancements in machine learning (ML) and molecular characterization have revealed the potential of quantitative structure-performance relationships (QSPR) for rapid and accurate in silico BCS classification. The present study aims to develop a web platform for high-throughput BCS classification based on high-performance ML models. Initially, four data sets of BCS-related molecular properties: log S, log P, log D, and log Papp were curated. Subsequently, 6 ML algorithms or deep learning frameworks were employed to construct models, with diverse molecular representations ranging from one-dimensional molecular fingerprints, descriptors, and molecular graphs to three-dimensional molecular spatial coordinates. By comparing different combinations of molecular representations and learning algorithms, LightGBM exhibited excellent performance in solubility prediction, with an R2 of 0.84; AttentiveFP outperformed others in permeability prediction, with R2 values of 0.96 and 0.76 for log P and log D, respectively; and XGBoost was the most accurate for log Papp prediction, with an R2 of 0.71. When externally validated on a marketed drug BCS category data set, the best-performing models achieved classification accuracies of over 77 and 73% for solubility and permeability, respectively. Finally, the well-trained models were embedded into the first ML-based BCS class prediction web platform (x f), enabling pharmaceutical scientists to quickly determine the BCS category of candidate drugs, which will aid in the high-throughput BCS assessment for candidate drugs during the preformulation stage, thereby promoting reduced risk and enhanced efficiency in drug development and regulation.
Read full abstract