We construct a coordinate-space potential based on pionless effective field theory with a Gaussian regulator. Charge-symmetry breaking is included through the Coulomb potential and through two- and three-body contact interactions. Starting with the effective field theory potential, we apply the stochastic variational method to determine the ground states of nuclei with mass number $A\leq 4$. At next-to-next-to-leading order, two out of three independent three-body parameters can be fitted to the three-body binding energies. To fix the remaining one, we look for a simultaneous description of the binding energy of $^4$He and the charge radii of $^3$He and $^4$He. We show that at the order considered we can find an acceptable solution, within the uncertainty of the expansion. We find that the EFT expansion shows good agreement with empirical data within the estimated uncertainty, even for a system as dense as $^4$He.
Read full abstract