BackgroundThoracic aortic aneurysm (TAA) is a silent but dangerous cardiovascular disease. Understanding molecular mechanisms of TAA on single-cell level might provide new strategies for preventing and treating TAA. MethodsSingle-cell RNA sequencing was performed on control and aneurysmal thoracic aorta to find out specific cell clusters and cell types. Western blot and histological staining were used to verify the findings of single-cell transcriptome analysis. Characteristics of Versican (VCAN) overexpressed myofibroblast was evaluated through bioinformatic methods and experimental validation. ResultsA total of 3 control and 8 TAA specimens were used for single-cell transcriptome analysis including 48,128 thoracic aortic cells. Among these cells, we found out a specific cell cluster containing both hallmarks of smooth muscle cell (SMC) and fibroblast. Thus, we defined these cells as myofibroblast. Further single-cell transcriptome analysis identified VCAN as a cellular marker of myofibroblast. Western blot and histological staining revealed that VCAN(+) myofibroblast was significantly increased in TAA specimens compared with control individuals. Differential analysis, functional, pathway enrichment analysis and cell-cell communication analysis demonstrated that VCAN(+) myofibroblast was closely associated with previous reported TAA associated pathological process including SMC proliferation, SMC migration and extracellular matrix (ECM) disruption. Pathway analysis found out significant activation of PI3K-AKT signaling pathway within VCAN(+) myofibroblast, which was further confirmed by experimental validation. ConclusionsSingle-cell RNA sequencing identified VCAN(+) myofibroblast as a typical cellular hallmark of TAA. These cells might participate in the pathogenesis of TAA through activation of PI3K-AKT signaling pathway to link SMC proliferation, SMC migration and ECM disruption.
Read full abstract