In this paper we study frame definability in finitely valued modal logics and establish two main results via suitable translations: (1) in finitely valued modal logics one cannot define more classes of frames than are already definable in classical modal logic (cf. [27, Thm. 8]), and (2) a large family of finitely valued modal logics define exactly the same classes of frames as classical modal logic (including modal logics based on finite Heyting and MV-algebras, or even BL-algebras). In this way one may observe, for example, that the celebrated Goldblatt–Thomason theorem applies immediately to these logics. In particular, we obtain the central result from [26] with a much simpler proof and answer one of the open questions left in that paper. Moreover, the proposed translations allow us to determine the computational complexity of a big class of finitely valued modal logics.