This article discusses on the measured third-order intermodulation (IMD3) products and third harmonics (H3) appearing in a set of six different solidly mounted resonators (SMR) and bulk acoustic-wave (BAW) resonators with different shapes and stack configurations. The discussion is supported by a comprehensive nonlinear distributed circuit model that considers the nonlinear effects potentially occurring in any layer of the resonator stack. The aluminum-nitride (AlN) and silicon-dioxide (SiO2) layers are identified as the most significant contributors to the IMD3 and H3. The frequency profile of the third-order spurious signals also reveals that, in temperature-compensated resonators, where the SiO2 layers are usually thicker, the remixing effects from the second-order nonlinear terms are the major contributors to the IMD3 and H3. These second-order terms are those that explain the second-harmonic (H2) generation, whose measurements are also reported in this article. Unique values of the nonlinear material constants can explain all the measurements despite the resonators have different shapes, resonance frequencies, and stack configurations.
Read full abstract