Migraine results from episodic changes in central nervous system physiologic function in hyperexcitable brain manifested by abnormal energy metabolism, lowered threshold for phosphene generation, and increased contingent negative variation. Human functional magnetic resonance imaging and magnetoencepholography data strongly suggest that aura is caused by cortical spreading depression. Brain hyperexcitability may be caused by low magnesium levels, mitochondrial abnormalities with abnormal phosphorylation of adenosine 5'-diphosphate, a dysfunction related to nitric oxide, or calcium channelopathy. Low magnesium can result in opening of calcium channels, increased intracellular calcium, glutamate release, and increased extracellular potassium, which may in turn trigger cortical spreading depression. Mitochondrial dysfunction has been suggested by a low phosphocreatine:Pi ratio and a possible response by migraine patients to riboflavin prophylaxis. Nitroglycerine administration results in a delayed migraine-like headache in migraine patients but not in control patients, and a nonspecific nitric oxide synthase inhibitor aborted migraine at 2 hours in the majority of tested migraine patients compared to controls. Many patients with familial hemiplegic migraine have a missense mutation in the P/Q calcium channel, so that this form of migraine, at least, is associated with a demonstrable calcium channelopathy. The generation of migraine occurs centrally in the brain stem, sometimes preceded by cortical spreading depression and aura. Activation of the trigeminovascular system stimulates perivascular trigeminal sensory afferent nerves with release of vasoactive neuropeptides, resulting in vasodilation and transduction of central nociceptive information. There is then a relay of pain impulses to central second- and third-order neurons and activation of brain stem autonomic nuclei to induce associated symptoms.
Read full abstract