Metasurfaces hold great promise for terahertz (THz) chiral-optical devices. Here, we proposed a chiral THz metasurface with quasi-bound state in the continuum (BIC) for maximum chirality. By exploiting structural perturbations of the dipole displacement and the diverging angle for the THz metasurface, the symmetry-protected BIC transforms into quasi-BIC. The critical coupling condition is satisfied by the introduction of graphene, enabling the theoretical maximum absorption of the quasi-BIC. Subsequently, the perturbations are balanced to obtain maximum chirality. The numerical simulations show that the THz metasurface exhibits strong linear chirality with the circular dichroism (CD) of 0.99 at the quasi-BIC. Additionally, the chiral third harmonic generation (THG) is achieved, characterized by high efficiency up to 19% and strong THG-CD as high as 0.99. It is expected that the THz metasurfaces has great potential for applications in chiral sensing and imaging.