The root endophytic fungus Serendipita indica establishes beneficial symbioses with a broad spectrum of plants and enhances host resilience against biotic and abiotic stresses. However, little is known about the mechanisms underlying S.indica-mediated plant protection. Here, we report S.indica effector (SIE) 141 and its host target CDSP32, a conserved thioredoxin-like protein, and underlying mechanisms for enhancing pathogen resistance and abiotic salt tolerance in Arabidopsis thaliana. SIE141 binding interfered with canonical targeting of CDSP32 to chloroplasts, leading to its re-location into the plant nucleus. This nuclear translocation is essential for both their interaction and resistance function. Furthermore, SIE141 enhanced oxidoreductase activity of CDSP32, leading to CDSP32-mediated monomerization and activation of NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), a key regulator of systemic resistance. Our findings provide functional insights on how S.indica transfers well-known beneficial effects to host plants and indicate CDSP32 as a genetic resource to improve plant resilience to abiotic and biotic stresses.
Read full abstract