Abstract

Chloroplast FoF1-ATP synthase (CFoCF1) uses an electrochemical gradient of protons across the thylakoid membrane (ΔμH+) as an energy source in the ATP synthesis reaction. CFoCF1 activity is regulated by the redox state of a Cys pair on its central axis, that is, the γ subunit (CF1-γ). When the ΔμH+ is formed by the photosynthetic electron transfer chain under light conditions, CF1-γ is reduced by thioredoxin (Trx), and the entire CFoCF1 enzyme is activated. The redox regulation of CFoCF1 is a key mechanism underlying the control of ATP synthesis under light conditions. In contrast, the oxidative deactivation process involving CFoCF1 has not been clarified. In the present study, we analyzed the oxidation of CF1-γ by two physiological oxidants in the chloroplast, namely the proteins Trx-like 2 and atypical Cys-His-rich Trx. Using the thylakoid membrane containing the reduced form of CFoCF1, we were able to assess the CF1-γ oxidation ability of these Trx-like proteins. Our kinetic analysis indicated that these proteins oxidized CF1-γ with a higher efficiency than that achieved by a chemical oxidant and typical chloroplast Trxs. Additionally, the CF1-γ oxidation rate due to Trx-like proteins and the affinity between them were changed markedly when ΔμH+ formation across the thylakoid membrane was manipulated artificially. Collectively, these results indicate that the formation status of the ΔμH+ controls the redox regulation of CFoCF1 to prevent energetic disadvantages in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call