Indole-based heterocyclic scaffolds have become increasingly important in medicinal chemistry due to their notable pharmacological and biological properties. Their role in the discovery and development of innovative drugs for treating various diseases highlights their value. This study aimed to synthesize C3-indole derivatives linked to various heterocyclic scaffolds, including thiophenes, thiazolidine-4-ones, and 1,3,4-thiadiazoles, via the reaction of ethylthioacetanilide 2 with different α-haloketones.The structures of the target compounds were established using 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, infrared spectroscopy, and elemental analysis. The synthesized compounds were tested for antimicrobial activity against different microbes: S. aureus ATCC 6538 (Gram-positive bacteria), E. coli ATCC 25933 (Gram-negative bacteria), C. albicans ATCC 10231 (yeast), and fungi (A. niger NRRL-A326). Thiophene 6a, thiazolidine-4-one 8, and compound 10d exhibited the highest antimicrobial activities. The molecular docking study showed that compounds 2, 4, 6a, and 6c had good binding energy and favorable binding modes of interactions with the DNA gyrase B enzymes (PDB: 3 U2D) and (PDB: 1S14). The results showed that the NH group of the indole in compounds 2 and 4, together with the nitrile group (CN), played an important role in inhibiting DNA gyrase B of S. aureus, PDB: 3 U2D. Furthermore, the NH of the indole ring, together with the ethylamino group of compound 2, was crucial in inhibiting DNA gyrase B of E. coli, PDB: 1S14. These findings may encourage researchers to develop more effective C3-indole derivatives in their search for antimicrobial drugs.
Read full abstract