PurposeThe purpose of this paper is the design and investigation of novel acrylated epoxidized soybean oil-based photocurable systems as candidate materials for optical 3D printing.Design/methodology/approachAromatic dithiols, benzene-1,3-dithiol or benzene-1,4-dithiol, were used as cross-linking agents of acrylated epoxidized soybean oil in these systems. Kinetics of photocross-linking was investigated by real-time photorheometry using two different photoinitiators, 2, 2-dimethoxy-2-phenylacetophenone or 2-hydroxy-2-methylpropiophenone, in different quantities. The effect of the initial composition on the rate of photocross-linking, mechanical, thermal properties and swelling of obtained polymers was investigated.FindingsThe rate of photocross-linking was higher, more cross-links and shorter polymer chains between cross-linking points of the network were formed when benzene-1,4-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions. The higher yield of insoluble fraction, glass transition temperatures and values of compressive modulus were obtained when benzene-1,3-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions.Originality/valueThis is the first study of acrylated epoxidized soybean oil-based thiol-ene system by real-time photorheometry. The designed novel photocurable systems based on acrylated epoxidized soybean oil and benzenedithiols are promising renewable photoresins for rapid optical 3D printing on demand.
Read full abstract