Citrate synthase catalyzes the slow condensation of acetyldithio-CoA [Ac(= S)CoA] with oxalacetate to form thiocitrate [Wlassics, I.D., Stille, C., & Anderson, V.E. (1988) Biochim. Biophys. Acta 952, 269]. During the transient approach to steady state an observable amount of the dithioester absorbance disappears. The amplitude of the decrease in absorbance corresponds to 0.32, 0.03, and 0.02 enzyme equiv at pH 8.3, 7.5, and 6.6, respectively. The difference spectra from before and after the transient exhibit the dithioester lambda max at 306 nm. Acid quenching of a stiochiometric reaction between Ac(= S)CoA and citrate synthase following the transient quantitatively regenerates Ac(= S)CoA, indicating carbon-carbon bond formation had not yet occurred. The apparent first-order rate constant of the transient is independent of Ac(= S)CoA concentration and increases with decreasing pH, being 0.007, 0.016, and 0.04 s-1 at pH 8.3, 7.5, and 6.6, respectively. 2-Fluoroacetyldithio-CoA is a better inhibitor of citrate synthase, Ki = 300 nM, and substrate, Vmax = 2 X 10(-3) s-1, than Ac(= S)CoA. 1H NMR experiments indicate that citrate synthase catalyzes the exchange of the alpha-hydrogens of Ac(= S)CoA with turnover numbers of 0.13 and 0.54 s-1 at pD 7.9 and 7.2, respectively. Analysis of the proton and deuterium decoupled 13C NMR spectra of [2-13C]Ac(= S)CoA that has exchanged 37% of the alpha-hydrogens in the presence of citrate synthase indicates that the relative proportions of CH3, CH2D, CHD2, and CD3 were 0.29, 0.39, 0.25, and 0.07, respectively. This statistical distribution indicates each exchange event is independent. The data indicate that citrate synthase stabilizes the ionized form of Ac(= S)CoA by 5 kcal/mol relative to the un-ionized form, that the ionized dithioester is on the reaction pathway, and that below pH 8.3 the slow carbon-carbon bond forming reaction is responsible for the 10(6) decrease in Vmax caused by substituting sulfur for oxygen in the thioester carbonyl.