Additive manufacturing (AM) processes, such as Fused Filament Fabrication (FFF), enable the production of lightweight parts with high stiffness-to-weight ratios, making them highly suitable for a wide range of engineering applications. However, ensuring the mechanical reliability of these components, particularly for load-bearing purposes, requires systematic mechanical testing of well-designed specimens to asses their suitability. While the tensile properties of additively manufactured materials have been extensively studied, the compressive behavior of components produced via AM, particularly those made from thermoplastic materials, remains comparatively underexplored and insufficiently characterized in the existing body of research. Among these materials, polylactic acid (PLA)—a biodegradable thermoplastic derived from renewable resources—has gained prominence in AM applications. Recent studies have investigated the compression properties of PLA in reinforced materials; however, the focus has primarily been on solid, semi-solid, or porous specimens. These investigations largely overlook thin-walled structures, which are integral to weight-saving designs and commonly feature in topology-optimized structures. Understanding the mechanical behavior of monolayers, the fundamental building blocks of most AM components, is essential for accurately predicting the overall performance of multilayer structures. Monolayers represent the smallest, most basic structural elements of AM parts, and their properties directly influence the behavior of the final, more complex assemblies. Establishing a methodology that correlates monolayer properties with those of multilayer components could significantly streamline testing procedures. By performing mechanical tests on monolayers, instead of on more intricate multilayer specimens, manufacturers could reduce testing complexity and cost while accelerating the development process. The current literature reveals a gap in the design and analysis of thin-walled AM specimens, especially monolayers, under compressive loads. Specifically, the design of monolayer or thin-walled AM compression specimens without infill has not been thoroughly explored. This article addresses this gap by investigating the design and testing of AM monolayer compression specimens produced using FFF of PLA. Three distinct specimen geometries are considered—circular, helicoidal, and S-shaped—to evaluate their potential for understanding and predicting the compressive behavior of AM monolayer structures.
Read full abstract