The defect structure of AlGaN/GaN superlattices and GaN layers grown through vapor-phase epitaxy from organometallic compounds is investigated using x-ray diffraction analysis before and after implantation with erbium ions at an energy of 1 MeV and a dose of 3 × 1015 cm−2, as well as after annealing. For a superlattice with a total thickness larger than the implantation depth, the satellites of the superlattice region strained under the action of ions disappear in the x-ray diffraction pattern after annealing at temperatures higher than 900°C. This suggests that the radiation-induced defects responsible for the positive deformation in the layer are annealed at these temperatures. However, annealing even at a temperature of 1050°C does not lead to complete recovery of the initial state and the positive deformation in the remaining regions is caused by residual defects. An analysis of the x-ray diffraction patterns demonstrates that, in samples with thin superlattices located at the depth corresponding to maximum radiation damage, the periodic structure that disappears after implantation at a dose of 3 × 1015 cm−2 is not recovered even after annealing at a temperature of 1050°C. This inference is confirmed by the results of examinations with an electron microscope.
Read full abstract