Prefabricated reinforced concrete staircases (PC staircases) are prefabricated components that are widely used in prefabricated buildings and are used in large quantities. During the production and construction of a PC staircase, the lifting point setting directly affects the construction safety, construction efficiency, and construction quality. In this paper, we analyze the quality problems and safety risks in the design, production, and construction of PC staircases under the constraints of multidimensional spatial characteristics, clarify the key technical difficulties of prefabricated staircase lifting under the multidimensional spatial and temporal constraints, and analyze the factors that should be considered in the setting of lifting points. In this paper, a prefabricated staircase lifting point setting database is established and a thin-plate spline interpolation algorithm is introduced to expand it. Based on the support vector machine algorithm, the process of optimization is carried out for the kernel function scale parameter and penalty factor, and it is concluded that for every increase of two in the number of cross-validation folds, the percentage reduction in minimum RMSE is 9.4%, 17.8%, and 4.2%, respectively, the percentage increase in the optimization time is 39.7%, 61.8%, and 27.3%, respectively, and a PC staircase lifting point setup method based on the small-sample database is proposed. The number of lifting points and lifting point locations of the PC staircase satisfying the multidimensional spatial feature constraints can be obtained by inputting the five design parameters of the PC staircase, namely, the number of treads, the height of the treads, the width of the treads, the width of the staircase, and the weight of the staircase, into the lifting point setup method proposed in this paper. The reliability of the precast reinforced concrete staircase lifting point setting method proposed in this paper when considering the multidimensional spatial constraint characteristics is verified by the precast staircases in deep shafts for assembly construction at the Chongqing metro station.
Read full abstract