Abstract
Image-based virtual try-on aims to fit a target garment to a reference person. Most existing methods are limited to solving the Garment-To-Person (G2P) try-on task that transfers a garment from a clean product image to the reference person and do not consider the Person-To-Person (P2P) try-on task that transfers a garment from a clothed person image to the reference person, which limits the practical applicability. The P2P try-on task is more challenging due to spatial discrepancies caused by different poses, body shapes, and views between the reference person and the target person. To address this issue, we propose a novel Keypoints-Driven Flow Based Virtual Try-On Network (KF-VTON) for handling both the G2P and P2P try-on tasks. Our KF-VTON has two key innovations: (1) We propose a new keypoints-driven flow based deformation model to warp the garment. This model establishes spatial correspondences between the target garment and reference person by combining the robustness of Thin-plate Spline (TPS) based deformation and the flexibility of appearance flow based deformation. (2) We investigate a powerful Context-aware Spatially Adaptive Normalization (CSAN) generative module to synthesize the final try-on image. Particularly, CSAN integrates rich contextual information with semantic parsing guidance to properly infer unobserved garment appearances. Extensive experiments demonstrate that our KF-VTON is capable of producing photo-realistic and high-fidelity try-on results for the G2P as well as P2P try-on tasks and surpasses previous state-of-the-art methods both quantitatively and qualitatively. Our code is available at https://github.com/OIUIU/KF-VTON .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.