Thermal bubble-driven micro-pumps (also known as inertial pumps) are an upcoming micro-pump technology that can be integrated directly into micro/mesofluidic channels to displace fluid without moving parts. These micro-pumps are high-power resistors that locally vaporize a thin layer of fluid above the resistor surface to form a high-pressure vapor bubble which performs mechanical work. Despite their geometric simplicity, thermal bubble-driven micro-pumps are complex to model due to the multiphysics couplings of Joule heating, thermal bubble nucleation, phase change, and multiphase flow. As such, most simulation approaches simplify the physics by neglecting Joule heating, nucleation, and phase change effects as done in this study. To date, there are no readily available, reduced physics open-source modeling tools that can resolve both pre-collapse (defined as when the bubble is expanding and collapsing) and post-collapse (defined as when the bubble has re-dissolved back into the subcooled fluid) bubble and flow dynamics. In this study, an OpenFOAM framework for modeling thermal bubble-driven micro-pumps is presented, validated, and applied. The developed OpenFOAM model agrees with both experimental data and commercial computational fluid dynamics (CFD) software, FLOW-3D. Additionally, we assess the shape of the transient velocity profile during a pump cycle for the first time and find that it varies substantially from theoretical Poiseuille flow during pre-collapse but is within 25% of the theoretical flow profile during post-collapse. We find that this deviation is due to flow never becoming fully developed during each pump cycle. We envision the developed OpenFOAM framework as an open-source CFD toolkit for microfluidic designers to simulate devices with thermal bubble-driven micro-pumps.
Read full abstract