Abstract
Sonochemistry in a thin fluid layer has advantages of no visible cavitation, no turbulence, negligible temperature changes (≲1 °C), low power transducers, and transmissibility (sound pressure amplification) of ≳106. Unlike sonochemistry in semi-infinite fluids, resonance and so constructive interference of sound pressure can be established in thin layers. Constructive interference enables substantial amplification of sound pressure at solid fluid interfaces. Fluid properties of sound velocity and attenuation, oscillator input frequency, and thin fluid layer thickness couple to established resonance in underdamped conditions. In thin layer sonochemistry (TLS), thin layers are established where ultrasonic wavelength and oscillator-interface separation are comparable, about a centimeter in water. Solution of a one dimensional wave equation identifies explicit relationships between the system parameters required to establish resonance and constructive interference in a thin layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The journal of physical chemistry. C, Nanomaterials and interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.