Transitioning from powder photocatalysts to thin film photocatalysts is one of the necessary steps toward industrializing photocatalytic hydrogen production. Herein, we reported the integration of non-noble metal cocatalyst MoP decorated with TiO2 and CdS, forming TiO2/(MoP/CdS) for ultraviolet-visible light utilization. The designed powder TiO2/(MoP/CdS) composites achieved a superior hydrogen production rate of 42.2 mmol g-1 h-1, which is 30.1 times that of TiO2/CdS, performing the highest activity among the TiO2-CdS-based composite photocatalysts. Moreover, we fabricated a thin film from TiO2/(MoP/CdS) powder, which exhibited comparable photocatalytic activity for hydrogen production, achieving 35.5 mmol g-1 h-1 and maintaining long-term stability for 150 h. The outstanding performance was attributed to the ability of the TiO2/(MoP/CdS) composite photocatalysts to absorb both visible and ultraviolet light. Additionally, the heterojunction formed between TiO2 and CdS also played a significant role in the overall photocatalyst activity. This cost-effective catalyst holds promise for future large-scale industrial applications.