A study of the dead layer thickness and quenching factor of a plastic scintillator for use in ultracold neutron (UCN) experiments is described. Alpha spectroscopy was used to determine the thickness of a thin surface dead layer to be 630 ± 110nm. The relative light outputs from the decay of 241Am and Compton scattering of electrons were used to extract Birks' law coefficient, yielding a kB value of 0.087 ± 0.003 mm/MeV, consistent with some previous reports for other polystyrene-based scintillators. The results from these measurements are incorporated into the simulation to show that an energy threshold of (∼9keV) can be achieved for the UCNProBe experiment. This low threshold enables high beta particle detection efficiency and the indirect measurement of UCN. The ability to make the scintillator deuterated, accompanied by its relatively thin dead layer, gives rise to unique applications in a wide range of UCN experiments, where it can be used to trap UCN and detect charged particles in situ.
Read full abstract