Phenotypic plasticity is one mechanism that allows organisms to adapt to changing environmental conditions, and is especially important for plants since they are generally immobile. Recent anthropogenic disturbances such as oil spills have expanded the types of stressors that plants must cope with, and more work is needed to understand the extent to which plants can adapt. This study examined the physiological and anatomical responses of Ipomoea pes-caprae to crude oil, and determined its plasticity in response to crude oil. Four concentrations of crude oil (1%, 2%, 3%, and 4% v/w) were applied to experimental plants and then compared with control plants over the next 120 days. Crude oil meaningfully impacted 4 out of 5 physiological characters (survival time, leaf length, leaf width, and chlorophyll content) and 4 out of 19 anatomical characters (leaf blade thickness, leaf spongy layer height, leaf adaxial cutin thickness, and leaf abaxial cutin thickness). These results demonstrate that I. pes-caprae exhibits low anatomical plasticity in response to crude oil, resulting in reduced survival and physiological performance. Our findings highlight the importance of understanding how anthropogenic actions affect relatively immobile plants, which are not always able to cope with such stressors.