In this comprehensive investigation, the sustainable production and utilization of gas separation membranes derived from coconut water (CW) waste was investigated. The research focuses on the synthesis of bacterial cellulose (BC) and cellulose acetate (CA) membranes from CW, followed by a thorough analysis of their characteristics, including morphology, ATR-FTIR spectroscopy, tensile strength, and chemical composition. The study rigorously evaluates membrane performance, with particular emphasis on CO2/CH4 selectivity under various operational conditions, including pressure, membrane thickness, and number of stages. The application of these membranes in gas separation units was optimized for CO2/CH4 separation performance and eco-efficiency through a multi-stage membrane approach. The findings indicate that in double-stage configurations, CA membranes with a thickness of 0.04 mm, operating at 0.28 MPa, achieve a CO2/CH4 selectivity of 35.52, significantly surpassing single-stage performance (selectivity: 19.72). Furthermore, eco-efficiency analysis reveals optimal performance at 0.04 mm thickness and 0.175 MPa, reaching 3.08 CO2/CH4 selectivity/THB. These results conclusively demonstrate the viability of converting agricultural waste into high-performance gas separation membranes, representing a significant advancement in sustainable membrane technology. This research contributes valuable insights to the field and paves the way for further innovations in eco-friendly membrane production and application.
Read full abstract