Epilepsy, a chronic neurological disorder characterized by recurrent unprovoked seizures, presents a substantial challenge in approximately one-third of cases exhibiting resistance to conventional pharmacological treatments. This study investigated the effect of 4-allyl-2,6-dimethoxyphenol, a phenolic compound derived from various natural sources, in different models of induced seizures and its impact on animal electroencephalographic (EEG) recordings. Adult male Swiss albino mice were pre-treated (i.p.) with a dose curve of 4-allyl-2,6-dimethoxyphenol (50, 100, or 200 mg/kg), its vehicle (Tween), or standard antiepileptic drug (Diazepam; or Phenytoin). Subsequently, the mice were subjected to different seizure-inducing models – pentylenetetrazole (PTZ), 3-mercaptopropionic acid (3-MPA), pilocarpine (PILO), or maximal electroshock seizure (MES). EEG analysis was performed on other animals surgically implanted with electrodes to evaluate brain activity. Significant results revealed that animals treated with 4-allyl-2,6-dimethoxyphenol exhibited increased latency to the first myoclonic jerk in the PTZ and PILO models; prolonged latency to the first tonic-clonic seizure in the PTZ, 3-MPA, and PILO models; reduced total duration of tonic-clonic seizures in the PTZ and PILO models; decreased intensity of convulsive seizures in the PTZ and 3-MPA models; and diminished mortality in the 3-MPA, PILO, and MES models. EEG analysis indicated an increase in the percentage of total power attributed to beta waves following 4-allyl-2,6-dimethoxyphenol administration. Notably, the substance protected from behavioral and electrographic seizures in the PTZ model, preventing increases in the average amplitude of recording signals while also inducing an increase in the participation of theta and gamma waves. These findings suggest promising outcomes for the tested phenolic compound across diverse pre-clinical seizure models, highlighting the need for further comprehensive studies to elucidate its underlying mechanisms and validate its clinical relevance in epilepsy management.
Read full abstract