The P3b is a prominent event-related potential (ERP) with maximal amplitude between 250 ms and 500 ms after the onset of a rare target stimulus within a sequence of standard non-target stimuli (oddball paradigm). Several studies found reduced P3b amplitudes in patients with schizophrenia compared to neurotypicals. Our work and the literature suggest that temporal imprecision may play a large pathophysiological role in schizophrenia. Here, we investigated whether reduced P3b amplitudes result from reduced neural activity (power) or temporal imprecision (inter-trial phase coherence; ITC) in delta and theta bands, using two EEG datasets from different studies with different oddball paradigms (Study 1: 19 patients with schizophrenia and 17 matched controls, Study 2: 26 patients and 26 controls). Both studies revealed typical P3b ERP components with smaller amplitudes in patients. Reduced ITC in patients was found in the delta band, which correlated with P3b peak amplitudes for all participant groups (ρ = 0.58–0.89). In Study 1, we also found significant differences between patients and controls in ITC in the theta band, which also correlated with P3b peak amplitudes (patients’ ρ = 0.64, controls’ ρ = 0.54). This was not found in Study 2. The results indicate that P3b amplitude reduction in patients with schizophrenia is linked to a reduction in temporal precision of neural activity. These results expand the notion of imprecision in temporal processing at phenomenological, psychological, and neurological levels that have been related to disturbances of the sense of self. They confirm that temporal imprecision may be more important than the reduction of neural activity itself.
Read full abstract