SUMMARY Bipolar plates are responsible for functions of vital importance to the long-term performance of fuel cells. They play crucial roles in water and gas management, mechanical strength and electrical conductivity. It also significantly contributes to the volume, weight and cost of fuel cell stacks. The properties of bipolar plates are affected by the materials and processes used in the manufacturing of the plates. The objective of this article is to review the use of thermoplastic materials as polymer matrices in bipolar plate applications. Conductive composites consisting of different types and blends of thermoplastic polymers are detailed discussed. The effects of filler types and processing conditions are given. Several thermoplastic blends consisting of carbon black, carbon nanotube and graphite are evaluated. The dispersion of conductive fillers, in particular, polymer composites and polymer blend composites is also given. Copyright © 2013 John Wiley & Sons, Ltd.
Read full abstract