Nickel–titanium (NiTi) is the most commonly used shape memory alloy (SMA) for actuator applications, though its usefulness is limited to temperature ranges below 100 °C. High temperature SMAs are formed by adding ternary elements to NiTi, but their usefulness as actuators is still in question. The purpose of this research was to characterize and train two high temperature SMAs, NiTi29.7Hf20 and NiCu5Ti29.7Hf20, to determine their effectiveness as linear actuators. Low temperature martensitic phase and high temperature austenitic phase stress–strain tests were performed to characterize the materials’ behavior followed by temperature cycling under constant stress. Temperature cycling under constant stress is known as thermomechanical training and resulted in small amounts of plastic strain growth and the development of two-way shape memory (TWSM). The results from these tests support the conclusion that hafnium distorts slip planes within the martensitic material phase, and that (Ti,Hf)2Ni and (Ti,Hf)3Ni4 particulates form during aging and annealing. The distorted slip planes cause slip and martensite reorientation to occur simultaneously, which develops a strong internal stress field during training within the first few cycles. The internal stress field develops TWSM, but limits further plastic growth. The particulate formation also embrittles the material. The transformation temperatures of both alloys were below creep and annealing temperatures making them ideally suited for high temperature actuators.