Six Co-Rh/Fe3O4 catalysts with different cobalt loadings were prepared by the co-precipitation of RhCl3, Co(NO3)2, and Fe(NO3)3 using Na2CO3 as the precipitant. These catalysts were tested for dicyclopentadiene (DCPD) hydroformylation to monoformyltricyclodecenes (MFTD) and diformyltricyclodecanes (DFTD). The results showed that the MFTD formation rate increased with increasing cobalt loading, whereas the DFTD formation rate initially increased and then decreased when the cobalt loading was greater than twice that of Rh. The DFTD selectivity was only 21.3% when monometallic Rh/Fe3O4 was used as the catalyst. In contrast, the selectivity was 90.6% at a similar DCPD conversion when the bimetallic 4Co-2Rh/Fe3O4 catalyst was employed. These catalysts were characterized by temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and thermogravimetric and differential thermal analyses (TG-DTA). The results obtained by these complimentary characterization techniques indicated that adding cobalt to the Rh/Fe3O4 catalyst enhanced the Rh reducibility and dispersion; the Rh reducibility was easily altered, and increasing the cobalt loading improved the Rh dispersion. It was concluded that the enhanced catalytic performance with increasing cobalt loading might be due to the formation of a more reactive Rh species with a different Rh–phosphine interaction strength on the catalyst surface.
Read full abstract