Light-fueled dissipative self-assembly possesses enormous potential in the field of optical information due to controllable time-dependent optical signals, but remains a great challenge for constructing intelligent light-operated logic circuits due to the limited availability of optical signal inputs and outputs. Herein, a series of light-fueled dissipative self-assembly systems with variable optical signals are reported to realize diverse logic gates by modulating time-dependent fluorescence variations of the loaded fluorophores. Three kinds of alkyl trimethylammonium homologs are employed to co-assemble with a merocyanine-based photoinduced amphiphile separately to construct a series of dissipative self-assemblies, showing unexpectedly different fluorescence control behaviors of loaded fluorophores during light irradiation and thermal relaxation processes. The opposite monotonicity of time-dependent emission intensity is achieved just by changing the excitation wavelength. Furthermore, by varying the types of trimethylammoniums and excitation wavelengths, a robust logic system is accomplished, integrating AND, XNOR, and XOR functions, which provides an effective pathway for advancing information transmission applications.
Read full abstract