A series of highly interconnected porous poly(D,L-lactide acid) (PDLLA)/pyrite (Zi-Ran-Tong, FeS2) scaffold containing 5–20% of pyrite was fabricated by particle leaching combined with the thermal-induced phase separation method. Pyrite (FeS2, named as Zi-Ran-Tong in Chinese medicine), as a traditional Chinese medicine, has been used in the Chinese population to treat bone diseases and to promote bone healing. The mechanical properties of the PDLLA scaffold were significantly enhanced after the addition of pyrite. The osteoblastic ROS17/2.8 cell line was used and seeded on the PDLLA/pyrite scaffold to study its potential to support the growth of osteoblastic cells and to estimate the optimal dose of pyrite for bone tissue engineering. The effects of pyrite on cell proliferation and differentiation were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide and alkaline phosphatase activity assay. The cells on the porous composite scaffold formed a continuous layer on the outer and inner surface observed by scanning electron microscopy and fluorescence microscope. The results strongly suggested that the PDLLA/pyrite composite scaffold could stimulate the growth of ROS17/2.8 cells in vitro and it could be potentially used as a scaffold for bone tissue engineering.
Read full abstract