To expand further modern industrial applications of epoxy resin (EP), the urgent problems of flammability and poor mechanical properties have to be solved. Therefore, amino-functionalized carbon nanotubes (AFP@CNTs) was designed and successfully synthesized to enhance the comprehensive properties, including fire safety and mechanical properties. Especially, the flame retardant mechanism, the combustion and pyrolysis process of EP/AFP@CNTs were investigated as well. With the addition of 1.5 wt% AFP@CNTs, the peak heat release rate (PHRR) and total heat release (THR) of EP were reduced by 27.6% and 29.0%, respectively, which may due to the cooperative effect between the phosphorus-nitrogen synergistic flame retardant of polyphosphazene and the cohesive phase flame retardant of carbon nanotubes. In addition, the mechanical performance of EP/AFP@CNTs composites were also investigated. The results showed that the impact strength, tensile strength and the storage modulus effectively increased by 65.0%, 29.0% and 13.2%, respectively. Meanwhile, the change of the combustion and pyrolysis process of EP/AFP@CNTs may be attributed to the catalytic effect of the amino-functionalized polyphosphazene, which could participate in the formation of epoxy thermal curing crosslinking network and catalyze the degradation process of epoxy resin.
Read full abstract