This study adopts the melt compounding method to prepare /mutli-walled carbon nanotubes composites. The effects of different lengths of the mutli-walled carbon nanotubes on the isothermal crystallization behaviors, crystalline structure, and thermal stability of the polypropylene/mutli-walled carbon nanotubes composites are examined. The PLM results show that the combination of mutli-walled carbon nanotubes prevents the growth of polypropylene spherulites, and thus results in a small size of spherulites. The differential scanning calorimetry results show that the short (S-) or long (L-) mutli-walled carbon nanotubes can function as the nucleating agent of polypropylene, which accelerates the crystallization rate of polypropylene. Avrami theory analyses indicate that the addition of short-mutli-walled carbon nanotubes particularly provides polypropylene/mutli-walled carbon nanotubes composites with a high crystallization rate. The X-ray diffraction results show that the combination of mutli-walled carbon nanotubes does not pertain to the crystal structure. The TGA test results show that long-mutli-walled carbon nanotubes outperform short -mutli-walled carbon nanotubes in improving the thermal stability of polypropylene, and both can significantly improve it.
Read full abstract