Thermal ionization mass spectrometry is a powerful analytical technique that allows for precise determination of isotopic ratios. Analysis of low abundance samples, however, can be limited by the ionization efficiency. Following an investigation into a new type of metal-organic hybrid material, nanoporous ion emitters (nano-PIEs), devised to promote the emission of analyte ions and reduce traditional sample loading challenges, this work evaluates the impact that changing the metal in the material has on the ionization of uranium (U). Being derived from metal-organic frameworks (MOFs), nano-PIEs inherit the tunability of their parent MOFs. The MOF-74 series has been well studied for probing the impact various framework metals (i.e., Mg, Mn, Co, Ni, Cu, Zn, and Cd) have on material properties, and thus, a series of nano-PIEs with different metals were derived from this isoreticular MOF series. Trends in ionization efficiency were studied as a function of ionization potential, volatility, and work function of the framework metals to gain a better understanding of the mechanism of analyte ionization. This study finds a correlation between the analyte ionization efficiency and nano-PIE framework metal volatility that is attributed to its tunable thermal stability and degradation behavior.
Read full abstract